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Dense Nuclear Stellar Clusters
(NSCs) reside in most galactic nuclel
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*NSCs are detected in 50%-80% of spiral, (d)E,

and S0 galaxies (e.g., Carollo et al. 1998; Matthews
et al. 1999; Boker 2008).

* NSCs have typically half-light radii of 2-5
pc and masses of 1076 - 10©7Msun



Two NSC-formation scenarios
were suggested

* The dry merger/cluster infall scenario in
which a NSC Is formed from the infall of
multiple stellar clusters/galaxy mergers

(e.g. Tremaine 1975; Ostriker 1988; Capuzzo-Dolcetta

1993, Antonini et al. 2012; Antonini 2014: Gnedin et al.

2014;: HBP & Mastrobuobo-Battisti 2014; Mastrobuobo-
Battisti & HBP 2014)

* The In-situ star formation scenario in
which multiple star formation epochs In
the nucleus build up the the NSC

(e.g. Loose et al. 1982; Seth et al. 2006, Bekky 2007,
Aharon & HBP 2015)



The dry scenario: The infall of
multiple clusters form an NSC

e The NSC is built from the infall of several
massive clusters

» Potential problems: Long times for dynamical
friction inspiral
- However violent relaxation, instabilities and

massive perturbers may help kick clusters into
more radial orbits on shorter time scales

* Clusters infall produce stratification or “age
segregation” - stars from later clusters are less
concentrated near the center,



The cluster infall scenario produce
a dynamical “age” segregation
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The cluster infall scenario produce
a potential age/metallicity segregation
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The cluster infall scenario also
produces triaxiality, anisotropy
and streams/disks-like sub-strcutures
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The infall scenario forms an NSC
with a large core-like structure

10°

T /13
mmdo(mfﬂ’ s )

100




NSC structure and global TDE rates
can constrain the existence of IMBHS
locally and globally

NSC structure  TDE rates for MW
W/WO IMBHs galaxy:
- With IMBHSs:
~107-3 stars/yr
- W/O IMBH:

~107-5-107-4 stars/yr

Mastrobuono-Battisti, HBP &
Loeb 2014




The wet scenario: In-situ star
formation builds-up the NSC

* |Infall of a gaseous cloud leads to formation
of a gaseous accretion disk

» Star formation may occur in such disks,
producing stellar disks (e.q.
Artymowicz+1993, Collin & Zahn+1999,
Levin & Beloborodov+2003)

» Multiple such star-formation epochs build-
up the NSC

* Most recent populations should not be
relaxed



Long-term evolution of NSC through multiple
SFR epochs: Fokker-Planck

* Stellar cusp around a MBH — Fokker Planck
calculations (Bahcall & Wolf, 1976)
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Long-term evolution of NSC through multiple
SFR epochs: Fokker-Planck

« Stellar cusp around a MBH — Fokker Planck
calculations (Bahcall & Wolf, 1976)

8g(X,T):_X5/2@Q(X’T> R, (x)H B(x)

a'l- aX O P —
— . — _ —  loss cone |Star_formation

DF flow rate

* Adding a source term from star formation

movié::jit> Aharon & HBP 2015



The Galactic Center: an NSC lab

* Older stellar cusp
mass: ~10° M_ (2-4 pc scale)

with an inner-core region\

* Very young stellar disk
scale: 0.05-0.5 pc
mass:10°-10‘M_, age: ~5-7 Myr:
- Another more massive

Isotropic component

* Young B-stars

scale: ~0.5 pc ~200 earty type B-
stars on slightly super-thermal
orbits
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The GC NSC shows a core-like distribution
for the red giants
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The ages of the red-
glants range between 0.1
to a few Gyrs
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Several origins were suggested for
the GC core

Stellar collisions (e.g. Davies et al. 2010)
- > Too inefficient
Gaseous disk stripping (Amaro-Seone & Chen 2014)

- > Very fine-tuned (extreme radial dependence); marginally works only for
very small cores (~0.1 pc at most)

Resonant relaxation clearing (Merritt+2015)

- Size of core limited. Affects all populations

Post IMBH-infall un-relaxed system (merritt 2010)
- > No IMBH observed, core for all stellar populations

The cluster infall scenario (Antonini et al. 2012, HBP &
Mastrobuono-Battisti 2014)

- > Very large core of all stellar populations (with some age segregation)
In-situ formation scenario (Aharon & Perets 2015)
- > Core only for young stellar population, size can vary
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SF can form an apparent core of

__Intermediate age stars
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= = = hackground
e 3.0 GiyT
s 2 7 GYT
s 2 4 Gyr
s 2.1 Gyr

1.8 Gyr
— 1,5 Gyr
s 1,2 Giyr
s (). Gyr
s (0.6 Gy
e (), 3 Gy

Aharon & HBP 2015.



Origin of the Galactic center NSC
components (personal bias in blue...)

Cusp -> cluster-infall/in-situ SF

Disk -> Cloud infall + 2-body relaxation (Mapeli, Gualandris &
HBP 2014)

O-stars cluster -> cloud infall + ?7?

Young B-stars -> Tidal binary capture + massive perturbers +
resonant relaxation

G2, Gl->7?

Apparent core (only red giants)
- In-situ SF

Global core ->

- BIig -> cluster-infall
- Small -> RR clearing



disrupted stars [yr_1]

The tidal disruption rate of stars
evolves with time and depends on
the NSC build-up history
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Dynamical evolution of the stellar disk:
A hot cluster heats a cold disk

* A cold stellar disk embedded in a hot stellar
Cusp
* Disk heating:
— Self interactions
— Disk-cusp coupling
Regular (incoherent) relaxation
Collective effects:

Resonant (coherent) relaxation
Eccentric-disk instability

— Massive-perturbers
e |mportant components

— Massive stars and stellar black holes
— NSC potential



Results of 2-body disk heating are
consistent with observations of O-stars
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2-body Disk heating produces
mass stratification
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Top heavy MF required to explain
disk properties
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A note on the relation between
eccentricity and inclination

In 2-body relaxation: e~2 x i

For resonant relaxation inclination evolves
much faster than eccentricity

Eccentric disk instability -> Madigan talk (?)

The relation can provide a signature for the
relaxation process, and can constrain the
stellar black holes population



Summary

 Both cluster infall and in-situ star formation can

build-up NSCs

* Both processes leave behind “age-segregation”
signature from the multiple population

* These can produce radial gradients and distinct
strutures In the properties of NSC stellar

populations

* In-situ SFR may produce apparent cores structure
of younger and even intermediate-age stellar

population, possibly explaining t

* The history of TDES can probet
NSCs

ne GC core

ne evolution of



Summary |

» 2-body relaxation can explain the evolution of the
stellar disk, but can not explain the large isotropic
component of young stars

» Binary disruptions can also serve a source for
stars in NSCs, and in particular the innermost
regions of NSCs

* This process could important for understanding
the origin of the young B-stars in the GC.



The disk heats due to 2-body releaxtion
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Binary disruption

Binary disruption

Hypervelocity
star

Captured star

MBH
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Movie



Relaxed NSCs are cuspy

* Relaxed clusters around MBHs are expected
to show a power-law radial density profile

(p~r'7'4 ; Bahcall-Wolf distribution)

* Binary MBH mergers may destroy nuclear
clusters, forming a core

« Many NSCs in spiral galaxies show evidence
for young nuclear disks/flattened structures


file:///home/hagai/talks/sstars_sim.avi

Relaxed NSCs are cuspy;
but real NSCs have curves...
* Mass segregation: Multiple-mass populations

could have power laws ranging between -1.5 -
-2

* Binary MBH mergers can scour NSCs and
destroy them



Relaxed NSCs are cuspy;
Real NSCs have curves...

* Relaxed clusters around MBHs are expected
to show a power-law radial density profile

(p~r'7'4 ; Bahcall-Wolf distribution)

* Binary MBH mergers may destroy nuclear
clusters, forming a core

« Many NSCs in spiral galaxies show evidence
for young nuclear disks/flattened structures



|solated disk of equal mass stars
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|Isolated disk of multi-mass stars

Self Interaction Coupling
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density [pc 3]

NSC-build-up and
Intermediate age cores
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Captured Stars and Cusp Structure

* Stellar cusp around a MBH : Fokker Planck
calculations (Bahcall & Wolf, 1976

0g(x,T)
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« Adding a source term from binary disruptions
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Population segregation

* Should exist for 2-body relaxing system

* Non-observation will require some type of
violent relaxation which produce complete
mixing



Compact object and cusp Structure
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* Binary source can cause outflow of single stars from
the cusp.




Summary

e We discussed the formation and evolution of
NSCs through cluster infall and in-situ star
formation

* Both processes leave behind “age-segregation”
signature from the multiple population

* These can produce radial gradients In the
oroperties of NSC stellar populations

* Hybrid models are likely most realistic

 In-situ SFR may produce apparent cores structure
of younger and even intermediate-age stellar
population, possibly explaining the GC core



Summary |

* Binary disruptions can also serve a source for
stars in NSCs, and in particular the innermost
regions of NSCs

* This process could important for
understanding the origin of the young B-stars
In the GC.



We use N-body simulations to study
the cluster-infall scenario

e 12 consecutive infall of 10M6 Msun clusters
Into galactic nucleus (MBH with 4x10"6 Msun)

* Analysis of the NSC structure, and the
distribution of the multiple population of stars

» Later we explored the possibility of infall of
IMBH-hosting cluster



Initial Conditions

We modeled the Galaxy by mean of a truncated power law
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For The GCs we used a King model with Wy = 5.8, ox = 35km/s, r. = 0.5pc,
rr=8pc and M = 1.1 x 10°M,. In one set of simulations, at the center of
each GC there is an IMBH with M = 10*M,.
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The Cluster Infall Scenario:
The movie

Movie



The cluster infall scenario:
Dynamical age and mass segregation

@ Stars at Rc from the infalling cluster
center are stripped by MBH and the
NSC at Rs, defined as the tidal radius

for stars at that position:

p_ Mgy + Mnsc(< Rr) 1/3 L
T M("i_ Rﬂ) y

HBP & Mastrobuono-Battisti 2014
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